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A B S T R A C T   

Radio Frequency (RF) energy harvesting has been used to power wireless and low-powered devices. However, RF 
energy harvesting has limitations in terms of the amount of power that can be collected based on signal avail-
ability. Hence, energy prediction is essential to improve energy harvesting circuits’ performance. Previous 
research has mainly focused on improving power harvesting policies or theoretically estimating the harvested 
energy. Very few works have considered the prediction of the RF signal as time series data using real RF mea-
surements. Moreover, challenges such as the power consumed by the circuit’s harvesting decisions and the 
impact of outliers on the model performance haven’t been addressed yet. This paper presents a complete pipeline 
for developing the best predictive model for RF energy in cellular frequency bands. Real-time measurements are 
taken in different frequency bands using software-defined radio technology. We use four artificial intelligence 
techniques to model the RF energy signal. Additionally, we propose an optimized model with an enhanced loss 
function, which makes the model more resilient to anomalies, saving computational power and time consumed in 
cleaning the data. The four algorithms are investigated, and their prediction accuracies are compared. The 
average power of a period of 5 min is accurately forecasted. Numerical results in the 1960 MHz band show that 
long short-term memory has the best performance, followed by the DeepAR algorithm with prediction accuracies 
of 95.76% and 95.02%, respectively. Moreover, the proposed optimized model showed a 32.2% lower prediction 
error than the traditional models.   

1. Introduction 

Energy harvesting technology has replaced traditional batteries since 
it is a clean and environmentally friendly source. Energy can be scav-
enged from several sources, which include solar energy, vibrational 
energy, wind energy, thermal energy, and radio frequency energy (Sil 
et al., 2017). In particular, radio frequency energy is a reasonable choice 
as it can be harvested from TV signals, radio waves, Wi-Fi signals, and 
satellite stations (Mekid et al., 2017). RF energy harvesting technology 
can be described as the procedure of collecting RF signals from ambient 
or dedicated sources and converting them into electrical power. Since it 
is available, small in size, and implantable, radio frequency energy 
harvesting (RFEH) has been used in cognitive radio networks, wireless 
sensor network (WSN) technologies (Varghese et al., 2016), (Mouapi 
and Hakem, 2018), biomedical wearable devices (Hesham et al., 2021), 
and internet of things (IoT) applications (Tran et al., 2017), (Ozger et al., 

2018). 
RF energy harvesting has been used in various industries and ap-

plications. For example, An RF energy harvester was developed to har-
vest from the Wi-Fi signals at the 2.45 GHz band and could generate 
direct current (DC) power even with low power inputs of − 40 dB m 
(Olgun et al., 2012). The generated power was sufficient to drive a 
temperature and humidity meter with Liquid Crystal Display (LCD) 
display. Another energy harvester in (Vyas et al., 2013) designed to 
harvest from a wireless TV signal could power a 16-bit microcontroller. 
Researchers in (Syed et al., 2017) have also designed an energy har-
vesting chip that could harvest at an input power of − 12 dB m, which 
was used to run a microcontroller + radio System on Chip (SoC). The 
study in (Khan et al., 2020) proposes a reconfigurable 2.45 GHz RF-DC 
power converter to harvest RF energy. The circuit could switch between 
a low-power path and a high-power path based on the RF input power. 
The circuit could achieve more than 20% efficiency. In industry, the 
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Powercast P2110 harvester can achieve output power of up to 5.25 V 
(Powercast). Another RF energy harvester has been used to power a 
sensor module in a food monitoring quality system. (Do et al., 2021), 
(Lam et al., 2020). The designed harvester operates at 915 MHz fre-
quency and could output 3.3 V with a low input power of − 8 dB. In IoT 
applications, an RF energy harvester at 1.8 GHz was designed to power 
sensor nodes in a museum monitoring system (Eltresy et al., 2019). 
Researchers in (Xu et al., 2019) presented a design of an RF energy 
harvester at 2.45 GHz to supply an IoT smart sensor system. The pro-
posed design could achieve 48.3% efficiency at − 3 dB m input power. 

On the contrary, RF energy is time, location, and spectrum- 
dependent. The amount of RF energy on working days differs from 
weekends for a specific location. Also, some frequency bands have more 
RF energy than others. Places with more people using cell phones are 
more likely to have more RF energy. Hence, the harvesting circuit needs 
to choose the optimal frequency band and time, which would be ach-
ieved by using machine learning to predict where and when the most 
amount of RF energy would be present. 

The ability to predict RF energy levels is crucial in energy harvesting 
applications as it can help to minimize the power consumption of the 
energy harvesting circuit. By analyzing the predicted RF energy, the 
circuit can determine whether the amount of RF energy available is 
worth keeping the circuit on or if it should be in sleep mode and save 
power (Mekid et al., 2017). Furthermore, in cases where the harvested 
energy is insufficient to power the load, predicting this event can enable 
the system to take appropriate actions, such as wireless power transfer 
or placing the load in sleep mode (Kaushik et al., 2015), (Ma et al., 
2021). This is especially useful in WSNs where the nodes are powered 
periodically. In some applications, predicting the RF energy is essential 
to help select the optimum frequency channel for harvesting (Hooshiary 
et al., 2018). 

Machine learning has been applied in many applications of 
communication systems. In RFEH circuits, some studies developed the 
optimal harvesting policies in RF energy harvesting devices. In (Hoang 
et al., 2014), the Markov decision process (MDP) along with an online 
algorithm was proposed to obtain the best channel access strategy for 
transmitting data or harvesting energy in cognitive radio networks. Also, 
MDP was used to decide the optimal power allocation in energy 
harvesting-powered devices (Li et al., 2019), (Xu et al., 2020). 

Some works presented learning techniques to choose the optimal 
location or frequency band for harvesting. A decision policy in (Darak 
et al., 2016) using the Bayesian multi-armed bandit (MAB) method was 
developed to select the optimal sub-band for harvesting. Authors in 
(Kwan et al., 2020) presented a protocol that enables sensors in WSNs to 
harvest RF energy from intended and unintended sources. They use two 
algorithms, a linear forecaster provided with a linear regression-based 
enhancer and artificial neural networks, to decide the optimal 
schedule for RFEH. Researchers in (Yao and Ansari, 2021) use the RFEH 
technology is used to charge drones’ batteries. They present an energy 
harvesting policy to minimize the long-term power consumption of 
drones. None of these works employed machine learning methods for 
modelling the RF signal itself. 

In the wireless-powered communication network (WPCN), a learning 
algorithm based on Bayes’ theorem was used in hybrid access point 
(HAP) to estimate the amount of energy consumed by wireless devices 
that harvest energy from HAP (Abuzainab et al., 2017). Researchers in 
(Munir and Dyo, 2018) considered the human mobility effect on the 
storage medium, for example, in the case of wearable devices. They 
proposed a predictor based on the Kalman filter to estimate the available 
energy and exchange between two different-sized capacitors based on 
the surrounding conditions. In (Koirala et al., 2019), a prediction algo-
rithm based on moving average was proposed to predict energy in a 
WSN node by considering the history of this node as well as all the 
surrounding ones. Although these works addressed the issue of opti-
mizing the RF energy harvesting process, these works did not use actual 
RF measurements. 

Two algorithms, linear regression, and decision trees were proposed 
in (Azmat et al., 2016) to forecast RF energy for a given time and fre-
quency. In (Eid et al., 2019), support vector machines were presented to 
predict the maximum obtainable power from Wi-Fi in five different lo-
cations. In (Ye et al., 2021), Four machine learning techniques were 
proposed to predict the available RF energy in communication systems. 
Very few works of literature have considered the prediction of RF energy 
as time series data. Moreover, none of these works addressed the effect 
of outliers on the model performance, which can lead to inaccurate re-
sults, and also the effect of different days of the week on the harvesting 
efficiency and model performance. These studies haven’t discussed the 
prediction of the RF signal for a time interval. Long-term predictions 
require more powerful and complex learning techniques. 

Motivated by the above insights, this paper suggests a complete 
artificial intelligence (AI) workflow for RF energy modelling. We employ 
powerful ML methods to pre-process and model the real-time RF energy 
data. This work aims to find the optimal predictive model for RF energy 
by exploring and comparing different time series algorithms. We model 
the RF energy as time-series data and present four machine learning 
techniques to forecast the mean value of the RF energy that can be 
harvested. Our evaluation of the performance of the time series models 
reveals that long short-term memory (LSTM) outperforms other tech-
niques by achieving 95.76% prediction accuracy and that DeepAR is the 
most stable model with a 0.0212 range of errors. The key contributions 
of this work can be presented as follows.  

● We measure the RF signal at different frequency bands using a 
software-defined radio (SDR) system.  

● The Random Cut Forest (RCF) algorithm is used in pre-processing the 
data to eliminate the outliers.  

● We optimize the LSTM model by modifying the loss function so that 
it eliminates the anomalies effect and hence, the model no longer 
needs the anomaly detection algorithm in the inference stage.  

● The model is designed to be applicable for all days, and we evaluate 
the model performance for different days of the week. 

The remainder of this paper is structured as follows. In section 2, RF 
data measurement will be introduced. The presented pipeline will be 
illustrated in section 3. Data pre-processing, selection of important pa-
rameters, a brief description of the time-series models, and the proposed 
optimized model are explained in subsections 3.1 through 3.7. Section 4 
discusses the obtained results for predicting the RF energy using 
different models, and section 5 gives some conclusions on the research. 

2. RF data acquisition 

SDR is a radio whose hardware components can be implemented and 
controlled by software (Akeela and Dezfouli, 2018). This allows the 
radio to be more adaptable to different functionalities without the need 
to change the hardware architecture (Molla et al., 2022). SDR has been 
used in various military and non-military applications, including Mobile 
Communications, Cognitive Radio, and Wireless Sensor Networks. 

The block diagram shown in Fig. 1 represents the SDR receiver where 
the RF waves are captured via an antenna and then converted to Inter-
mediate Frequency (IF) through the RF Front End (RFFE) (Pozniak et al., 
2019). Next, the Analog to analog-to-digital converter (ADC) converts 
the wave to a digital form for further processing. After that, the Digital 

Fig. 1. SDR receiver block diagram.  
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Down Converter (DDC) translates the digital IF signal into baseband 
samples centered at zero frequency with a lower sampling rate. The 
signal can then be processed by software. 

USRP N210 is the hardware used here as an interface between the RF 
spectrum and the software. USRP was designed by National Instruments 
to capture RF signals via an antenna connected to its RF port (Ettus 
Research). The USRP contains a Spartan 3 A-DSP 3400 FPGA, a 14-bit 
ADC that can sample at a rate up to 100 MS/s, a 16-bit DAC with 400 
MS/s, and the WBX daughterboard. In this experiment, An 850–6500 
MHz PCB log periodic antenna is used to receive the RF signal. This 
USRP is connected to the host PC through an ethernet interface. 

The software platform used for baseband processing is GNU Radio, 
an open-source development framework used for the implementation of 
SDR (GNU Radio). It contains a variety of signal processing blocks. An 
application is implemented by connecting blocks that exist in gnu radio 
to compose a flowgraph. 

The signal is measured using the conventional energy detection 
technique shown in Fig. 2. This method depends on passing the signal 
through a band pass filter (BPF) of a specified bandwidth followed by a 
squaring device, then an integrator to integrate the signal over a time 
interval (Shukla et al., 2016). 

3. Experimental methods 

In the approach outlined in this paper for model generation, we 
follow multiple stages, as illustrated in Fig. 3. The first stage is collecting 
the raw data, which is the RF energy signal. We use the SDR technology 
to collect the RF data. We utilize the universal software radio peripheral 
(USRP) N210 as our hardware in this implementation, along with the 
GNU radio software. The second phase is data preparation which in-
cludes data standardization and data cleaning. Standardization involves 
computing the required standard deviation and mean values from the 
dataset. For data cleaning, we use an anomaly detection algorithm to 
detect the outliers in the data. The output of this phase is the data that 
can be used in the following stages for model training and testing. 

The processed data are trained using four algorithms: LSTM, 
DeepAR, Prophet, and Autoregressive Integrated Moving Average 
(ARIMA). This involves optimizing the model parameters to minimize 
the error between the predicted outputs and the actual outputs. Once the 
models are trained, they are evaluated using a separate dataset that was 
not used in the training process. This helps to assess the model’s per-
formance and identify any potential issues such as overfitting or 
underfitting. Eventually, based on the highest level of performance 
attained during the evaluation phase, one of these algorithms is chosen 
for making predictions. 

3.1. Data collection 

The RF signal was measured for three months in 6 cellular frequency 
bands which include 880–915 MHz, 925–960 MHz, 1710–1785 MHz, 
1805–1880 MHz, 1920–1980 MHz, and 2110–2170 MHz. Each band is 
divided into frequency bins of 0.2 MHz bandwidth. Data points of the 
same frequency bin are captured every 3 s. For models’ evaluation, we 
compute the normalized root mean square error (NRMSE) for N number 
of time samples, expressed by Eq. (1) and Eq. (2), to represent the pre-
diction error. Each model was trained and evaluated using the same 
day’s data in the same frequency band. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Actual data pointi − Predicted data pointi)

2

N

√
√
√
√
√

(1)  

NRMSE =
RMSE

max(Actual data) − min (Actual data)
(2)  

3.2. Data pre-processing 

Before modelling, our first step is to ensure the data is clean and 
contains no outliers. Outliers are observations that diverge from the data 
pattern and have a negative impact on the model performance. We used 
the Random Cut Forest (RCF) algorithm to detect outliers in the dataset. 
RCF identifies an anomaly score for each point in the dataset, as shown 
in Fig. 4. Low scores imply that these data points are considered normal 
points, on the other hand, high scores indicate anomaly data points. 
From Fig. 5, detecting and handling anomalies increases the prediction 
accuracy. In our experiment, it was observed that the prediction error 
decreases by at least 2.78% in chunk seven after handling the outliers. 
The average value of NRMSE of the eight chunks containing outliers is 
0.1169, whereas the average value of NRMSE without the outliers is 
0.069. 

3.3. Selecting the number of observations 

The number of observations refers to the number of samples used for 
model training and testing. Different numbers of samples, starting from 
1000 to 20,000 samples, have been examined in this work to select the 
optimal number of observations. 

In Fig. 6, we evaluate the model performance using 2000, 3000, 
4000, and 5000 observations. When we use a dataset of 2000 samples, 
the lowest value of error captured is 0.0389 in chunk 7, whereas the 
highest error value is 0.0819 in chunk 4. The average value of the 
NRMSE using 2000 samples is 0.0545. When using 3000 samples, the 
best prediction value comes out in chunk 2 with an NRMSE of 0.0373, 
whereas chunk 7 records the highest prediction error as 0.0732; this 
gives an average error value of 0.0487. 

When using 4000 samples, the lowest prediction error arises in 

Fig. 2. Conventional energy detector.  

Fig. 3. ML workflow for model generation.  

Fig. 4. Anomalies in RF energy data.  
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chunk 3 with an error of 0.0351; on the other hand, the highest pre-
diction error is observed in chunk 5 with an error of 0.0623. The mean 
prediction error when using 4000 samples is 0.0464. When a dataset of 
5000 samples is applied, the lowest prediction error is observed in chunk 
4 with a value of 0.0337. The highest prediction error is recorded as 
0.0591 in chunk 7, which results in an average error of 0.0424. The 
results show that the model’s performance is best when using 5000 
samples of observations. 

Fig. 7 shows the mean NRMSE of different chunks for different 
numbers of observations. Numbers of observations fewer than 2000 
have shown poor performance, whereas larger data sets have shown 
little or no improvement compared with the performance of datasets of 
less than 5000 samples, causing the model to consume much more time. 

3.4. Window size selection 

In this subsection, we study the impact of different window sizes on 
the model accuracy. Window size is the number of samples taken as 
history before predicting the next sample. Different window sizes have 
been tested to determine the optimal choice of window size. In pre-
dicting the mean of a time interval, it has been observed that when we 
increase the window size, the training time of the model overgrows, 
causing the model to be very slow. On the other hand, the prediction 
accuracy records slight improvements as the window size increases. A 
window size of 30 has been selected for predicting the mean of 100 
samples, which means that we only need the samples of the last minute 
and a half to predict the average RF energy of the next 5 min. As shown 
in Fig. 8, the NRMSE reduces rapidly for window sizes less than 10, then 
larger sizes achieve a slight change in the NRMSE. 

Fig. 5. NRMSE of different chunks of data in the LSTM model with and 
without outliers. 

Fig. 6. NRMSE for LSTM model in 8 chunks of data with window size = 30, future interval = 100, and different observations of (a) 2000 observations (b) 3000 
observations (c) 4000 observations (d) 5000 observations. 

Fig. 7. The mean NRMSE of different numbers of observations for the 
LSTM model. 
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3.5. Future interval selection 

The future interval is the time interval in the future of which we 
predict the mean. Hence, we study this interval’s length or its number of 
samples. Experiments have shown that the model can forecast the mean 
of intervals up to 5000 samples with almost the same average prediction 
accuracy. But as we increase the time interval, the mean of the intervals 
tends to be a constant value compared to the original instantaneous 
values, so the model predicts the average of the whole data set, not the 
average of a specific period. From Fig. 9, the mean of intervals larger 
than 300 samples, representing 15 min, are more likely to converge to 
the mean value of all data. In contrast, intervals of samples less than 300 
have variations across different time intervals. Hence, the mean RF 
energy of the next 15 min can be accurately predicted. 

3.6. Time series models 

As mentioned before, we model our RF energy data as time series 
data since they are a collection of time-related observations. Time series 
prediction relies on analyzing current and past observations and 
developing a model to predict future observations. LSTM, DeepAR, 
Prophet, and ARIMA are presented in this research. The four techniques 
are evaluated and compared with respect to their error rates. This sub-
section gives a brief description of each of these algorithms. 

The LSTM network can be defined as a particular category of 
Recurrent Neural Networks with the ability to remember the sequence of 
the data (Sherstinsky, 2020). In LSTM architecture, the previous stage’s 
output is applied as the input to the current stage. The network decides 
at each step whether to modify the data in its memory or not; hence it 
keeps track of the valuable information in every step (Benhaddi and 
Ouarzazi, 2021). LSTM performs well with sequence data. One key 
advantage of LSTM is that it helps to overcome the problem of vanishing 

gradients and hence can capture long-term dependencies in the se-
quences. On the other hand, LSTMs are prone to overfitting and may 
require more memory to train. 

The proposed LSTM model architecture, presented in Fig. 10, com-
prises an input layer, three LSTM layers of 32, 16, and 8 hidden units, 
and an output layer. The first two hidden layers have a sequence-to- 
sequence architecture, whereas the third has a sequence-to-label archi-
tecture. The rectified linear unit (ReLU) activation function is selected in 
all layers, excluding the output layer, which has linear activation since 
we need to predict a continuous numerical value. The adaptive moment 
(ADAM) optimization algorithm is used due to its computational effi-
ciency, low memory usage, and its ability to handle large datasets. The 
model uses a value of 10^-3 as the learning rate and the mean square 
error for computing the loss function. The grid search optimization 
technique has been used to tune the hyper-parameters of the model. It 
searches through a defined set of values for each hyper-parameter to get 
the optimal values of the hyper-parameters that achieve the best 
performance. 

DeepAR is a deep learning algorithm proposed by Amazon and used 
for forecasting time series data. DeepAR uses autoregressive recurrent 
neural networks with LSTM cells in the architecture (Salinas et al., 
2020). DeepAR can have a more complex architecture than LSTM; 
however, it has many technical benefits. One remarkable advantage of 
DeepAR over traditional methods is that it can learn from multiple data 
series. Therefore, it can capture seasonality and complex relationships in 
the data with minimum feature modification. Furthermore, this method 
can predict the probability distribution of the sequence data series. It can 
also predict time series with little history samples. As is the case with 
LSTM, there are a few hyperparameters that can be tuned to best affect 
the algorithm accuracy in this model. We used three hidden layers, each 
of 32 cells, with a learning rate of 10^-3 and a batch size of 64. 

Prophet, a forecasting algorithm released by researchers at Face-
book, is a procedure for predicting time series data (Taylor and Letham, 
2018). It was developed to intuitively adjust the parameters without 
knowing details about the underlying model. This algorithm is based on 
an additive model of three components. The trend component represents 
non-regular changes in the data. The seasonality component represents 
the data’s periodic changes (daily, weekly, or annual). The third 
component observes the holiday effect. One advantage of Prophet is that 
it can model multiple seasonality and can integrate holidays into the 
model. In addition, it can predict time series data with missing dates. On 
the other hand, it can perform poorly with low numbers of observations. 

The Autoregressive Integrated Moving Average is considered one of 
the most popular time series models that can be used with non- 
stationary time series data (Siami-Namini et al., 2019). ARIMA model 
is a general form of Autoregressive Moving Average (ARMA), and it 
combines three processes. The autoregression process uses past obser-
vations to predict the current one, the moving average process takes into 
consideration the lagged errors, and the integrated process converts 
non-stationary time series into stationary. The ARIMA model presumes 
that the data values have a linear correlation structure, and hence it is 
better used in predicting one sample in the future. One potential 
advantage of ARIMA is that it only needs the prior data of the time series 
to generalize the model. It performs well with short-term predictions. On 

Fig. 8. Prediction error of different window sizes for predicting the mean of 
100 samples using 5000 observations in 1960 MHz frequency. 

Fig. 9. The mean RF energy value for different numbers of samples.  Fig. 10. Proposed LSTM architecture.  
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the other hand, it performs poorly with long-term predictions, it isn’t 
used with seasonal time series data, and it performs poorly with turning 
points. 

3.7. Optimized proposed model 

The loss function is a significant component of the accuracy of the 
model. To improve it, a modified Mean Square Error (MSE) loss function 
is used in the proposed model. The purpose of the optimized model is to 
eliminate the effect of outliers in the data and hence improve the 
training process as well as the performance of the model. The traditional 
MSE loss is calculated by Eq. (3) 

MSE =
1
N

∑N

i=1
(yi − ŷi)

2 (3)  

Where N is the number of training samples, y is actual output, and ŷ is 
the predicted output. 

The proposed model takes advantage of the anomaly scores obtained 
in the preprocessing stage. Since each data point is assigned a score 
value to identify the anomalies, we calculate the probability P of each 
data point being an anomaly in Eq. (4). This value describes how much 
each data point deviates from the entire dataset. 

Pi =
scorei − scoremin

scoremax − scoremin
(4)  

Loss Optimized =
1
N

∑N

i=1
((yi − ŷi) ∗ (1 − Pi))

2 (5) 

Enhanced loss function in our proposed solution is obtained by Eq. 
(5). The error resulting from outlier data points is then reduced using 
this number P, while the error resulting from typical data points is 
maintained. The proposed solution improves the accuracy of the model 
by minimizing the prediction error. 

4. Results and discussion 

4.1. Performance comparison of the 4 algorithms 

In this experiment, the 1960.1 MHz frequency bin is utilized for 
evaluation. Performance results, presented in Table 1, describe the 
NRMSE for predicting RF energy samples using the four algorithms. 
Each value in the table represents the average error value of using eight 
chunks in each method. Each chunk has 5000 samples of observations. 
We predict the mean of the following 100 samples, which enables the 
harvesting circuit to decide to harvest once every 5 min instead of every 
3 s. LSTM achieves the best performance with an average NRMSE of 
4.24%, followed by DeepAR with a 4.98% prediction error, then the 
Prophet algorithm with an average error of 5.11%. The ARIMA model 
recorded the lowest prediction accuracy with a 5.75% error. 

Fig. 11 shows the NRMSE of eight chunks of data in the four algo-
rithms. The best performance of LSTM is observed in chunk 4 with an 
accuracy of 96.63%, and the worst performance is recorded in chunk 7 
with 94.09% prediction accuracy. The lowest NRMSE of DeepAR takes 
place in the fourth chunk, with a prediction accuracy of 95.96%, 
whereas the seventh chunk records the lowest accuracy at 93.84%. In 

Prophet, the highest performance is recorded in chunk 4, with an ac-
curacy of 96%, and the worst performance is 93.79% prediction accu-
racy in chunk 7. The highest prediction accuracy using ARIMA is 95.33% 
in chunk four, whereas the lowest prediction accuracy occurs in chunk 7 
with 92.98% accuracy. The results indicate that LSTM performs better 
than other algorithms in all chunks in respect of NRMSE. However, it can 
be observed that DeepAR has the lowest variation of errors which makes 
DeepAR the most stable algorithm. DeepAR records a range of errors of 
0.0212, followed by Prophet with 0.0222, whereas LSTM records the 
highest range of errors as 0.0255, and the range of errors in ARIMA is 
recorded as 0.0235. Actual RF energy samples and predictions of the 
four algorithms in the first chunk are shown in Fig. 12. 

Predicting the mean value reduces the number of harvesting de-
cisions the circuit needs to take and the number of on/off the circuit 
makes. In addition, mean prediction is more accurate than instantaneous 
value prediction. Fig. 13 presents the accuracy of the four algorithms 
when predicting one sample and when predicting the mean of a period 
of samples. Results indicate that the prediction accuracy for predicting 
the samples’ mean of a time interval is higher than predicting one 
sample. 

4.2. Performance of the proposed enhanced model 

The improved loss function was evaluated in comparison to the 
conventional loss function for LSTM model while utilizing data that 
included outliers. The proposed method achieved lower error values 
compared to the traditional method for different datasets. The results 
are presented as normalized root mean squared error (NRMSE) values in 
Table 2. 

Based on the provided results, it appears that the enhanced model 
generally outperforms the LSTM model in terms of prediction error. 
Across all datasets, the enhanced model has lower error rates compared 

Table 1 
Performance comparison of LSTM, DeepAR, Prophet, and ARIMA in terms of 
NRMSE.  

ML Algorithms Mean NRMSE in 1960.1 MHz frequency 

LSTM 0.0424 
DeepAR 0.0498 
Prophet 0.0511 
ARIMA 0.0575  

Fig. 11. NRMSE of the four algorithms in 8 different chunks with window size 
= 30, future interval = 100, and 5000 observations. 

Fig. 12. Predicted RF energy using the four algorithms in 1960.1 
MHz frequency. 
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to the LSTM model. However, it is worth noting that the performance 
gain of the enhanced model over the LSTM model varies across different 
datasets. For example, in Dataset 9, the performance gain is relatively 
small, while in Dataset 3, the enhanced model significantly outperforms 
the LSTM model. The reason for this variation is attributed to the 
characteristics of the datasets, particularly the quantity and degree of 
deviation of the anomalies from the normal data points. Specifically, 
datasets 1 to 6 contain a larger number of high-level anomalies, whereas 
datasets 6 to 10 exhibit fewer and less severe anomalies. In general, the 
average error value for the traditional model is 0.1407, while the 
enhanced model records a 0.0954 average prediction error. However, 
this model should be trained on different datasets to ensure high per-
formance in making predictions. 

4.3. Analysis of energy prediction and harvester accuracy 

Fig. 14 represents a Box-plot diagram of the NRMSE distribution in 
different chunks of data in one day using the four algorithms. It can be 

observed that the minimum and median error values in Prophet and 
DeepAR are almost the same, but DeepAR provides a lower interquartile 
range of error values. LSTM presents the lowest values of NRMSE, while 
Prophet presents the highest. 

The predictive models can be used to increase the efficiency of the 
harvesting process. If the predicted energy value is lower than the 
threshold, the harvester will go to sleep mode. If the predicted energy 
value is higher than the threshold, the harvester will harvest the RF 
energy. 

A false positive decision occurs when the actual energy value falls 
below the threshold, and the predicted energy value is above the 
threshold. A false negative decision occurs if the real value is above the 
threshold and the predicted value is below it. In these cases, the 
harvester will make a wrong harvesting decision. We evaluated the 
harvester decision efficiency using precision and recall evaluation 
measures. Precision, also known as the Positive Predictive Value (PPV), 
measures the proportion of values predicted above the threshold and are 
correctly above the threshold. Recall or True Positive Rate (TPR) mea-
sures the proportion of real values above the threshold that are correctly 
predicted above the threshold. 

In Fig. 15, we use the LSTM model to evaluate the harvester effi-
ciency per day with a threshold set to 0.11 μW. In this experiment, the 
mean number of false positives is 12, and the mean number of false 
negatives is 9. 

The model achieves average precision and recall values of 82.01% 
and 80.68%, respectively. In Fig. 16, we use the DeepAR model with the 
same threshold. The mean number of false positives is 12.13, while the 
mean number of false negatives is 14.63. The DeepAR model records 
70.99% and 70.35% average precision and recall values, respectively. 

To discuss the applicability of the model for all days and evaluate its 
performance across different days of the week, the LSTM model was 
tested and evaluated across datasets from all days of the week. Fig. 17 
presents the harvester accuracy distribution per day for the LSTM model. 
The error rate for some days is more variable than others; however, the 
median value of accuracy oscillates between 62.5% and 92.9%. It can be 
observed that working days have higher chances of fault harvester de-
cisions than weekends (Friday and Saturday). This can be explained that 
weekends have more stable energy signals during the day, unlike 
working days. 

4.4. Analysis of the model complexity 

This section analyses the computational complexity of the models 
represented as a function of parameters related to both the data and the 
technique, depending on how it is implemented. For LSTM, the time 
complexity per weight for each time step is O (1) (Tsironi et al., 2017). 
As a result, the time complexity of an LSTM is O(W), where W is the 
number of weights. Therefore, the time complexity of the LSTM model is 
O (ij + jk + kl + lm) where i, j, k, l, and m stand for the number of nodes in 
the input layer, the second layer, the third layer, the fourth layer, and 
the output layer, respectively. The computational complexity of DeepAR 
can be approximated as the same complexity of LSTM since it is an 
LSTM-based recurrent neural network. 

For the ARIMA model, the complexity is calculated as O (n2T) where 
n is the total number of parameters p, d, and q and T is the size of the 
time series (Wang et al., 2022). It should be emphasized that the 
complexity of the ARIMA model increases quadratically. However, the 
number of nodes in LSTM architecture makes LSTM and DeepAR more 
computationally expensive. 

On the other hand, the computational complexity of neural networks 
can be reduced through various techniques (Masuko, 2017). Pruning 
techniques can be used to remove unnecessary connections, nodes, or 
weights from the neural network, which can significantly reduce 
computational complexity. Quantization techniques can be used to 
reduce the precision of weights and activations in the neural network, 
which can reduce the amount of memory and computational resources 

Fig. 13. Prediction accuracy comparison between one sample and mean sam-
ple prediction. 

Table 2 
Performance comparison of LSTM and proposed model in terms of NRMSE.   

LSTM Enhanced Model 

Dataset 1 0.1305 0.0937 
Dataset 2 0.1154 0.0843 
Dataset 3 0.2302 0.1182 
Dataset 4 0.2066 0.109 
Dataset 5 0.1966 0.1023 
Dataset 6 0.2496 0.1283 
Dataset 7 0.0831 0.0823 
Dataset 8 0.0693 0.069 
Dataset 9 0.0831 0.0823 
Dataset 10 0.0798 0.0774  

Fig. 14. Boxplot of NRMSE distribution of the four algorithms.  
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required. In addition, various compression techniques, such as weight 
sharing and knowledge distillation, can be used to reduce the size and 
computational complexity of neural networks. 

4.5. Performance comparison with the state-of-the-art models 

Given that LSTM has demonstrated superior performance compared 

to other techniques, this section presents a comparative analysis be-
tween LSTM and the most effective model among state-of-the-art models 
for predicting RF signals. Our literature analysis in Section 1 indicates 
that linear regression has the highest accuracy in the previous studies 
(Azmat et al., 2016; Eid et al., 2019; Ye et al., 2021). Therefore, we 
compare the performance of LSTM against LR. 

In Fig. 18, a comparison between the models in terms of NRMSE is 
presented where we predict the next sample, i.e., the immediate suc-
ceeding sample. Based on the provided results, it appears that the LSTM 
model outperforms the LR model in terms of NRMSE for predicting the 
next sample. 

Specifically, for all six chunks considered, the LSTM model achieved 
lower NRMSE values compared to the LR model. The difference between 
the NRMSE values of the two models varies across the different in-
stances. However, the difference between the NRMSE suggests that the 
LSTM model is significantly better than the LR model. 

In Fig. 19, we evaluate the performance of predicting the mean of the 
next 100 samples, i.e., the mean of the next 5 min. For all seven instances 
considered, the LSTM model achieved lower mean prediction error 
values compared to the LR model. LSTM achieved an average prediction 
error of 0.0401 while LR achieved a 0.047 average prediction error. 

Upon comparison of the models’ robustness against outliers, it is 
observed that the proposed solution outperforms both the LR and LSTM 

Fig. 15. Efficiency test for energy prediction using LSTM with 0.11 μW threshold.  

Fig. 16. Efficiency test for energy prediction using DeepAR with 0.11 μW threshold.  

Fig. 17. Boxplot representation of harvester accuracy distribution per day.  
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models in terms of predicting the target variable, both with and without 
outliers. Fig. 20 indicates that when outliers are present, the proposed 
solution achieved an average NRMSE value of 0.0889, which is 
considerably lower than both the LR model’s average NRMSE value of 
0.1674 and the LSTM model’s NRMSE value of 0.1185. This suggests 
that the proposed solution is better at handling outliers in the data and 
can produce more accurate predictions even in the presence of such 
anomalies. Moreover, the error of the LR model has a significant in-
crease in the presence of anomaly data compared to the other two 
models. It can be concluded that LR is less robust to outliers than LSTM 
and the proposed model. 

In terms of the data size, we evaluate the performance against 
different data sizes. The sample sizes used in previous works were 1200 
and 3098 samples. Fig. 21 indicates that increasing the data sample size 
decreases the prediction error in both LR and LSTM. 

Incorporating additional data into a machine learning model pri-
marily affects the training process, specifically the number of floating- 

point operations (FLOPs) required for training. However, it typically 
does not have a significant impact on the computational cost of making 
predictions. This is because the forward pass only involves applying the 
learned model parameters to the input data, which does not require 
additional training or adjustment of the model. Therefore, the compu-
tational cost of the forward pass is generally constant regardless of the 
amount of data used for training the model. 

5. Conclusions 

In this work, we propose a complete workflow for developing the 
optimal model to predict the energy of RF signals using various ML 
techniques. RF energy signal is measured at different frequency bands 
using SDR. Four different time series methods (LSTM, DeepAR, ARIMA, 
and Prophet) are discussed for comparison using the data of the 1960.1 
MHz frequency bin. We predict the mean of the next 5 min to ensure that 

Fig. 18. Prediction error comparison between LR and LSTM for predicting the 
instantaneous values. 

Fig. 19. Prediction error comparison between LR and LSTM for predicting the 
mean values. 

Fig. 20. Performance comparison between LR, LSTM, and the proposed model 
for datasets containing outliers. 

Fig. 21. NRMSE for different sizes of datasets in LR and LSTM.  
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the harvesting circuit consumes less power by making fewer harvesting 
decisions. The results indicate that LSTM has the highest accuracy of 
95.76%, followed by DeepAR and Prophet. The ARIMA records the 
worst prediction accuracy, and DeepAR is the most stable algorithm. 
Additionally, this research proposes an optimized model based on an 
enhanced loss function to reduce the effect of anomalies on the model 
performance. The proposed optimized model achieves robustness 
against outliers, achieving 32.2% lower prediction error than the 
traditional model. To the best of our knowledge, there is currently no 
deep neural network model that can accurately predict RF energy or 
effectively deal with anomalies that may affect the model’s performance 
in the field of RF energy harvesting. Accurately predicting RF energy is 
crucial for optimizing energy harvesting circuits and powering wireless 
and low-powered devices without relying on batteries. 

It’s critical to note that the suggested predictive model has some 
significant constraints such as having a relatively high computational 
complexity compared to other models. Given that the RFEH circuit has 
limited power, optimizing the algorithm so that it consumes minimum 
power is an essential consideration in future research. A future study can 
therefore explore quantization techniques for reducing the algorithm’s 
size, weight pruning, and model compression for optimizing computa-
tional complexity. Moreover, we intend to incorporate additional 
baseline models, specifically those utilizing advanced deep learning 
architectures. This would allow for a more thorough comparison of the 
proposed model’s performance against a diverse set of benchmarks. 
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